Indian Statistical Institute, Bangalore

B. Math. IIIrd Year Second Semester

Analysis IV

Mid-term examination Maximum marks: 100 Date : 26-2-2019 Time: 3 hours

[15]

(1) Consider \mathbb{R}^2 and \mathbb{R} with usual Euclidean metric. Identify as to which of the following functions from \mathbb{R}^2 to \mathbb{R} are continuous and which are uniformly continuous:

(i) $f_1((x, y)) = |x + y|$; (ii) $f_2((x, y)) = x^2 y$; (iii) $f_3((x, y)) = Max\{x, y\}.$ Prove your claims.

- (2) Let $\{f_n\}_{n\geq 1}$ and $\{g_n\}_{n\geq 1}$ be sequences of real valued continuous functions on a metric space X converging uniformly to functions f, g respectively. Show that if f, g are bounded functions then, $\{f_n g_n\}_{n\geq 1}$ converges uniformly to fg. Show that this is not true in general without boundedness assumption on functions. [15]
- (3) Consider the following differential equation on the real line:

$$y'(x) = x - 7y(x); \ y(0) = 0.$$

Show that there exists h > 0 such that this differential equation has unique solution in the interval (-h, +h). Find such a solution. [15]

- (4) Let $(X, d_1), (Y, d_2)$ be two metric spaces. Assume that (X, d_1) is compact. Suppose $f : X \to Y$ is a continuous function. Show that $f(X) = \{f(x) : x \in X\}$ is compact. If f is one to one, show that $f^{-1} : f(X) \to X$ is continuous. [15]
- (5) Let C([0,1], ℝ) be the space of real valued continuous functions on the interval [0,1] with supremum norm. Let S be the set of polynomials in C([0,1], ℝ), defined by

$$S = \{\sum_{k=0}^{10} a_k x^k : |a_k| \le (k+1), \ 0 \le k \le 10\}.$$

Is S compact in $C([0,1],\mathbb{R})$? Prove your claim.

[15]

- (6) Let $X = C_0([0,1], \mathbb{R})$ be the space of continuous real valued functions on [0,1] satisfying f(0) = 0. Show that the set of polynomials in X is dense in X with respect to supremum norm. [15]
- (7) Let $Y = C([-1,1],\mathbb{R})$ be the space of real valued continuous functions on the interval [-1,1] with supremum norm. Define $T: Y \to Y$ by

$$Tf(x) = (3x^2 - 2x + 11)f(x).$$

Show that T is a bounded linear map. Compute the operator norm of linear maps T and T^2 . [15]